A Space-Time Petrov-Galerkin Certified Reduced Basis Method: Application to the Boussinesq Equations
نویسنده
چکیده
We present a space-time certified reduced basis method for long-time integration of parametrized noncoercive parabolic equations with quadratic nonlinearity. We first consider a finite element discretization based on discontinuous Galerkin time integration and introduce associated Petrov-Galerkin space-time trialand test-space norms which yields optimal and asymptotically mesh independent stability constants. We then employ an hp Petrov-Galerkin (or minimum residual) space-time reduced basis approximation. We provide the Brezzi-Rappaz-Raviart a posteriori error bounds which admit efficient offline-online computational procedures for the three key ingredients: the dual norm of the residual, an inf-sup lower bound, and the Sobolev embedding constant. The latter are based respectively on a more round-off resistant residual norm evaluation procedure, a variant of the successive constraint method, and a time-marching implementation of a fixed-point iteration of the embedding constant for the discontinuous Galerkin norm. Finally, we apply the method to a natural convection problem governed by the Boussinesq equations. The result indicates that the space-time formulation enables rapid and certified characterization of moderate-Grashofnumber flows exhibiting steady periodic responses.
منابع مشابه
Existence of solution and solving the integro-differential equations system by the multi-wavelet Petrov-Galerkin method
In this paper, we discuss about existence of solution for integro-differential system and then we solve it by using the Petrov-Galerkin method. In the Petrov-Galerkin method choosing the trial and test space is important, so we use Alpert multi-wavelet as basis functions for these spaces. Orthonormality is one of the properties of Alpert multi-wavelet which helps us to reduce computations in ...
متن کاملThe Petrov-Galerkin Method and Chebyshev Multiwavelet Basis for Solving Integro-Differential Equations
Abstract: There are some methods for solving integro-differential equations. In this work, we solve the general-order Feredholm integro-differential equations. The Petrov-Galerkin method by considering Chebyshev multiwavelet basis is used. By using the orthonormality property of basis elements in discretizing the equation, we can reduce an equation to a linear system with small dimension. For ...
متن کاملNon-Linear Petrov-Galerkin Methods for Reduced Order Modelling of the Nav‐ ier-Stokes Equations using a Mixed Finite Element Pair
A new nonlinear Petrov-Galerkin approach has been developed for Proper Orthogonal Decomposition (POD) Reduced Order Modelling (ROM) of the Navier-Stokes equations. The new method is based on the use of the cosine rule between the advection direction in Cartesian space-time and the direction of the gradient of the solution. A finite element pair, P1DGP2, which has good balance preserving propert...
متن کاملThree dimensional static and dynamic analysis of thick plates by the meshless local Petrov-Galerkin (MLPG) method under different loading conditions
In this paper, three dimensional (3D) static and dynamic analysis of thick plates based on the Meshless Local Petrov-Galerkin (MLPG) is presented. Using the kinematics of a three-dimensional continuum, the local weak form of the equilibrium equations is derived. A weak formulation for the set of governing equations is transformed into local integral equations on local sub-domains by using a uni...
متن کاملA Space-Time Certified Reduced Basis Method for Burgers’ Equation
We present a space-time certified reduced basis method for Burgers’ equation over the spatial interval (0, 1) and the temporal interval (0, T ] parametrized with respect to the Peclet number. We first introduce a Petrov-Galerkin space-time finite element discretization, which enjoys a favorable inf-sup constant that decreases slowly with Peclet number and final time T . We then consider an hp i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 36 شماره
صفحات -
تاریخ انتشار 2014